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VORTEX GENERATION AND

WAVE-VORTEX INTERACTION

OVER A CONCAVE PLATE WITH

ROUGHNESS AND SUCTION

Fabio P. Bertolotti 1

DLR, Institut fiir Theoretische Str/Smungsmechanik

Bunsenstr. 10, D-37073 G_ttingen, Germany

ABSTRACT

The generation and amplification of vortices by surface inhomogeneities,

both in the form of surface waviness and of wall-normal velocity, is investigated

using the nonlinear PSE equations. Transients and issues of algebraic growth

are avoided through the use of a similarity solution as initial condition for the

vortex.

In the absence of curvature, the vortex decays as v/ll/:r when flowing over

streamwise aligned riblets of constant height, and grows as v _ when flowing

over a corresponding streamwise aligned variation of blowing/suction transpi-

ration velocity. However, in the presence of wall inhomogeneities having both

streamwise and spanwise periodicity, the growth of the vortex can be much

larger. In the presence of curvature, the vortex develops into a Gartler vortex.

The "direct" and "indirect" interaction mechanisms possible in wave-vortex

interaction are presented. The "direct" interaction does not lead to strong

resonance with the flow conditions investigated. The "indirect" interaction leads

to K-type transition.

lThis research was supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-19480 while the author was in residence at the Institute for

Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,

Hampton, VA 23681.
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1 Introduction

We present results from an investigation into the laminar-turbulent transition

process over a plate with wall undulations, wall blowing & suction, and con-

cave curvature. The investigation is based on numerical simulations using the

nonlinear PSE equations. The curvature is sufficiently small to allow the Bla-

sius profile to be used as the mean-flow in all the conditions investigated. The

particular topics covered in this report are:

1. The seeding of G/Srtler vortices by streamwise aligned wall corrugations

and blowing/suction inhomogeneities.

2. The receptivity of vortices to three dimensional wall corrugations and

blowing/suction inhomogeneities.

3. The effect of curvature on three-dimensional TS waves.

4. Some cases of nonlinear wave-vortex interactions.

Two geometries are considered. Figure la displays the geometry used in

the study of topic 1. The wall corrugations vary sinusoidally in the spanwise

direction, z, with a wavenumber/3, and have the crests aligned in the streamwise,

or z, direction. The label zk denotes the location at which the curvature departs

from zero and increases downstream up to a constant final value. The initial

location for the PSE marching solution, x0, is upstream of xk.

Figure lb displays the geometry used in the study of the receptivity of

vortices (GSrtler and other types) to wall corrugations which vary sinusoidally

in both x and z (topic 2). This receptivity problem is steady in time. Moreover,

when the acoustic source is added (represented in the figure by the speaker), the

distributed receptivity mechanism described by Crouch [1] is activated, creating

Tollmien-Schlichting waves. These waves then interact with the vortex (topic

4).
In figure 1, the wall undulation can be interpreted as either a physical un-

dulation present on the plate surface, or, in the case of blowing/suction, as

an iso-level of wall-normal velocity on a smooth plate. The height of the wall

undulation is of the order of 0.1% of the boundary layer thickness, hence the

undulation can represent imperfections on wing surfaces due to, for example,

temperature or direct stresses in flight. The peak surface transpiration veloc-

ity in the blowing and suction study is of order of 1 x 10 .4 U_, in agreement

with levels used in Laminar Flow Control experiments (P. Spalart, personal

communication).



(B)

Figure 1: Geometry used in the simulation. Top, the corrugated plate with an

initial flat section, followed by a section of concave curvature. Bottom, the same

geometry as above with wall Undulations in the streamwise direction added, as

well as acoustic forcing.



The main results corresponding to the topics listed above are:

1. Wall-aligned corrugations provide an efficient means for the generation of

G&rtler vortices.

, Vortices exhibit growth when flowing over three dimensional wall corru-

gations or blowing/suction inhomogeneities, even in the absence of cur-

vature. This receptivity persists when the wavenumbers of the wall inho-

mogeneities differ greatly from those of the vortex, i.e. short wavelength

undulations in z and z can force a large wavelength vortex.

.

,

The neutral stability curves for three-dimensional TS waves enlarge in size

as curvature is increased, and eventually extend to zero frequency; thus

connecting with the G&rtler vortices.

The direct and indirect wave-vortex interaction is presented. The indirect

interaction leads to a K-type resonant triad, while the direct interaction

shows no wave-vortex resonance at the conditions investigated.

A brief description of the PSE equations and the numerical algorithm em-

ployed to solve them is given in the appendix A. We also describe, in appendix B,

the construction of a self-similar solution that, when used as initial condition for

the vortex in the PSE marching procedure, yields results free of transients and

of algebraic growth (see Schimd and nenningson [2]): The self-similar solution,

thus, allows for the investigation of vortex receptivity to distributed forcing.

Otherwise, if an initial condition is used that leads to strong algebraic growth,

the effects of the distributed forcing will be masked. A similarity solution for

the GSrtler vortex was first presented by Denier, Hall & Seddougui [3] in their

investigation of vortex forcing from a plate with a localized hump.

1.1 Reference quantities, and geometry description

* _/ * * * is the locationThe reference length chosen is 6,. = u Xlooo/Ug,, where xl000*

at which the Reynolds number Rx = Uoox_ooo/V* equals 1 × l0 s. The symbol

* denotes a dimensional quantity. This reference length is used throughout

this report, with the exception of appendix B, which deals with the self-similar

solution.

The non-dimensional curvature is IC = 6._/a*k_,_, where a_:,,, is the radius of

curvature. Typical values of K: are 1,2, 4 and 8 × 10 -4. In the case of a subsonic

wind-tunnel test with Uoo = 15 m/s, the reference length is 6* = 1.2 mm, and

the radius of curvature is 12, 6, 3 and 1.5 meters respectively.



The coordinate along the streamwisedirection is x, the plate normal direc-

tion is y, and the spanwise direction is z The corresponding velocity components

are u, v, and w. The representation of the flow-field is described in appendix
A.

All modes are identified with the three integers in the triplet p = (l, n, k),

corresponding to the indices in the Fourier expansion e i'_'*+ik_z-it_t. The values

of a, fl and w are prescribed as input parameters to the PSE calculation. The

wavy-wall surface is represented by the function,

N K

H(x,z)= _ _ W e ''_'*+'k_z• (0,_,k) + c.c (1)
n=-N k=-K

where "c.c" denotes complex conjugate. The coefficients 14_ are complex con-

stants. The boundary conditions over the wavy wall are transferred to y = 0 via

a Taylor series expansion (see appendix A). The blowing/suction wall normal

velocity is described by,

N K

v..c(x,z)= ¢....,-,(o,,,,k)_ + c.c (2)
n=-N k=-K

The boundary conditions at the wall satisfied by the disturbances are then,

Up = 0 Vp : S(O,n,k) Wp : 0 (3)

The homogeneous boundary condition for Up and Wp implies weak suction

rates (Spalart [4]). Lastly, in the presentation of the results we use the local

Reynolds number R = k/u*x*/U_o = v/-R-_, and the nondimensional frequency

F • ,2 • f,= 2_rf U_/u , where is the dimensional frequency in Hz.

4



2 Validation of the self-similar vortex

The construction of the self-similar vortex solution is described in appendix B.

Here, we present the results which prove that the asumptions and approxima-
tions used to obtain the self-similar formulation are sound.

A test for the accuracy of the self-similar form of the vortex field can be

made by running the PSE using as initial conditions the solution to (19) and

(20). If the PSE solution remains close to self-similar over a downstream range

sufficiently long to otherwise display algebraic growth and decay, then the self-

similar approximation provides an acceptable initial condition for vortices in

both direct numerical simulations of the Navier-Stokes equations, and in PSE

integrations. The test was run using the linearized PSE equations with the

initial condition given at R = 300. The riblets on the wall were held constant

at an amplitude of 0.004 _(*n=300), while in the suction case, the level was held

constant at 1 × 10 -s. Figure 2 displays the maximum amplitude of the u velocity

component as function of Reynolds number, for various values of the spanwise

wavenumber fla = fl*_(*n=300). Note the abscence of transients in the plot. In
the case of the wall riblet, the amplitude decreases with streamwise distance

due to the following reason: the maximum of the u velocity occurs at y = 0

where the boundary condition (21) imposes a constant amplitude for u,_t.t, and

the physical u is related to the self-similar u,_tl by the factor Xo/X. On the

other hand, constant suction leads to a self-simialr vortex with u,_ increasing

proportional to v/X. The departure of the PSE solution from the self-similar one

as/3 is increased shows the error introduced by freezing the coefficent/32(X/Xo)

in the self-similar formulation.

Figure 3 displays the velocities us_t/(r/) and v,,ty(r/) at the initial location

R = 300, and downstream, at R = 1136 and 1670. The dots trace the shape of

the self-similar functions u,_t/(r/) and v,_b,(r/) , while the solid and dashed lines

show the corresponding profiles obtained by extracting the u,_t.t and v,_tl profiles

from those given by the PSE equations at R = 300 to R = 980 and R = 1600.

Both the u and the v velocity components computed with the PSE collapse close

to the self-similar profiles. This agreement, along with the abscence of algebraic

growth or other transients, validates the assumptions and approximations used

in generating the self-similar solution.



E

10-2

10-3

Constant Suction

• SelfffSimilar ::. /_1_0.06

................. i............... !.......................................... _-_,._. . .
_..', .............. ; ............... :............... : .............. .;. . . . _,. . .= . . . . .................

_.. .o.

i _ i i i
400 800 1200 1600

R

Figure 2: Self-Similar amplitudes

6



Constant Rib

8

7

6

5

_"4

5

2

1

0

•  e,f-Sim
- R=1156 I I

-.005

Lisetf

.000

8

7

6

5

_'-4

3

2

1

0
-1.00E-05 O.OOE+O0

Vsetf

Constant Suction

8

7

6

5

_-4

3

2

1

0

• Self-Sire 1
- R= 980 I ;

• • ji

-.0020 .0000

Uself

8

7

6

5

_'-4

3

2

1

0
O.OOE+O0

I •

t •

%

L

1.50E-05

Vself

Figure 3: Self-Similar profiles



3 Vortex Seeding

The generation of G6rtler vortices by a localized hump was investigated by

Denier, Hall _z Seddougui [3], and found that the mechanism was inefficient

in generating vortices. Later, Bassom and Hall [5] corrected some errors and

extended the work, and found that distributed forcing functions are much more

efficient in the generation of Ghrtler vortices.

We study the birth and growth of the Ghrtler vortices that develop on top

of the corrugated (i.e. ribbed) plate with a concave curvature. Initially, the

curvature of the corrugated plate is zero, and is increased smoothly from zero

at R = 300 to the maximum constant value at R > 500 with a half-period
cosine function.

At the onset of curvature, the flow is composed of the Blasius flow plus the

self similar Solution discussed above. Downstream, Ghrtler vortices develop with

the same spanwise wavenumber as the wall corrugation. The self-similar solution

has a non-zero projection onto the Ghrtler eigenmode, and, thus, provides the

initial amplitude for the vortex.

The five cases studied are categorized by the variation in x of the wall

corrugations. The case 'infinite' has constant amplitude for all R > 300; the

case '400-500' has a constant amplitude up to R = 400, then decreases smoothly

to zero between 400 < R < 500 and remains zero afterwards; the cases '400-600'

and '400-800' and '300-400' are of equal nomenclature. For each case, 5 runs are

made with the curvature taking on values of K; = 0, 1-× 10-4,2 × 10-4,4 × 10 -4

and 8 × 10 -4. The spanwise wavenumber in all cases is/_ = 0.15. The calculation

is maintained purely linear by artificially neglecting the nonlinear terms that

arise from a finite amplitude vortex.

Figure 4 displays the maximum amplitude of the u component of velocity as

function of Reynolds number. The plots on the left column of figure 4 display

the u,,,_ amplitude of the vortex mode versus Reynolds number for the cases

'infinite', '400-600', and '300-400'. The Ghrtler vortex amplitude is ploted on

the right column. This amplitude is computed by subtracting from the flow-field

the flow field due to the wall corrugation in the absence of curvature.

The 'infinite' case produces the fastest growth of the Ghrtler mode. This

fact suggests that the vortex is receptive to the forcing from the wali corrugation

over an extended streamwise extent. Indeed, the extend seems larger than the

region of strong nonlocal receptivity (Crouch[l], Crouch & Bertolotti [6]) for

traveling waves. The growth rates in all cases asymptote to a single curvature-

dependent value at R = 1400: the difference in amplitude at this position from

case to case is due to the different corrugation geometry.
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The 'kink' in the amplitude curvesof the '400-600'and '300-400' cases occurs

at the streamwise location where the decaying wall-mode's u,,,_ amplitude,

which is maximum at the wall, equals the growing GSrtler amplitude, which

has a maximum at about y = 2.5.

An interesting phenomena can be seen in the amplitude plots of the GSrtler

vortex in the '300-400' case. The kink in the amplitude curve in the neighbor-

hood of R = 800 divides the upstream region dominated by the wall mode from

the downstream region dominated by the GSrtler vortex. The streamwise po-

sition of this kink shifts downstream when curvature is increased. This suggest

that the wall-mode retards the growth of the GSrtler vortex.

4 Vortex Receptivity

We study the effect of surface roughness on the growth of vortices. I have

used the word "seeding" in the previous section and the word "receptivity" in

this section to differentiate between the types of forcing given to the vortex.

Seeding occurs when the forcing comes directly from the boundary condition,

and hence, is a linear process (the word "seeding" was suggested by M. Morkovin

in a private communication). Receptivity occurs when the forcing comes from

the nonlinear interaction between other modes. In thh absence of nonlinearity

(or in the limit of small amplitude), these modes do not affect the vortex at

all. In our case these modes are due to wall undulations or wall suction having
wavenumbers different from that of the vortex.

In order to isolate the receptivity effect from centrifugal instabilities, we

consider the case of a flat plate at zero angle of attack. The plate's surface

contains a spanwise periodic rib with streawise aligned peaks and valleys. This

rib generates the vortex - and at the initial marching location the vortex form

is given by the self-similar solution. The height of the rib is constant in x, and

corresponds to the coefficient _(0.0,2) = 1 x 10 -3 (see equation 1). In addition

to this rib, we add the source for other steady disturbances, either in the way of

additional surface undulations, Or using blowing and suction periodic in x and

z. The height or strength of this additional source is increased from 0 to its final

value using a ramp function starting at R = 425 and ending at R = 700. The

gradual introduction of these modes reduces the amount of algebraic growth
that is introduced into the evolution of the vortex.

The first set of results are for the case in which the wall contains one addi-

tional Fourier mode mode (besides the rib), having a streamwise wavenumber a

that is varied parametrically, and a spanwise wavenumber fl that is half that of

the vortex. The indices for the wall mode are of the form (0, n, 1), while that of

10



thevortex is (0,0;'2). Thus, the interaction of mode(0,n, 1) with its companion

mode (0,-n, 1) (i.e. from symmetry in z) creates a forcing at (0, 0, 2).

Figure 5 displays the results for the case of a wavy wall with Fourier coef-

ficient ?Y(0,,,,1) = 2 × 10 -3, and the case of blowing/suction with a coefficient

8(0,,,,1) = 5 x 10 -s, for different values of a. In the wavy-wall case, increasing

increases the forcing efficiency. For c_ = 1.0 the vortex increases one order in

magnitude. In the suction case, the opposite trend exists; reducing _ increases

the forcing. The explanation for this opposite trends can be seen in the velocity

profiles of the steady modes, shown in figure 6. Shortening the wavelength of

the wavy-wall mode increases the slope Ou/Oy at the wall, which is multiplied

by the wall undulation height to produce the forcing (see equation (11)). On

the Other hand decreasing _, while holding the suction level constant, increases

the u component of the velocity, hence the forcing in the interior of the domain.

The second set of results we present contain a pair of steady modes having

a difference in spanwise wavenumber equal to the vortex's wavenumber,

W(0,,_,m) = 2 × 10 -z W(0,,_,,_+2) = i 2 × 10 -z

S(0,,,,_) = 5 × 10 -s S(0,_,,_+2) = i 5 × 10 -s

The quadratic nonlinearity then produces a forcing at (0, 0, 2) for any value

of n and m. In this way, short wavelength disturbances can directly influence

long wave-length disturbances. This type of coupling was used by Crouch [7]

in a study of TS wave receptivity to short-scale waviness. The phase-shift of

90 degrees between the two steady modes leads to a more effective forcing than

the case were both Fourier coefficients _ are purely real.

Figure 7 displays the result for the combinations n = 1,m = 2, and n =

1,m = 6, with _ = 1.0 and fl = 0.15. The vortex has a spanwise wavenumber

of/_ = 0.30, as in the previous case. For reference, the case f1-4-/_ form figure 5

is included in the plot. The large vortex amplitude created by the "difference

interactions" shows that the coupling between short and long wavelengths can

be strong.

Figure 8a show the effect of the surface's undulation height on the evolution

of the vortex. A height as small as 2.5 × 10 -s can produce a noticeable increase

in vortex amplitude. For reference, it is useful to consider dimensional quan-

tities. In a slow-speed wind-tunnel with a free-stream velocity of 10 m/s, the

reference length is go = 1.5 mm (i.e. at R = 1000), thus the surface undula-

tions are roughly 15 micrometers. This small value suggest that the distributed

forcing form small plate undulations can introduce vortices in cases where the

curvature is nominally zero. In particular, distributed forcing can be a cause

11
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of the Klebanoff mode [8], in addition to the possibility of algebraic growth as

investigated by Herbert and Lin [9].

Figure 8b shows the velocity profiles of the vortex for the case n = 1,m = 1

of figure 8a. The u profiles agrees in shape with the experimental measurements

of Kendall [10] of the Klebanoff mode.
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5 The effect of curvature on three-dimensional

TS waves

We turn our attention now to three-dimensional TS waves and the effect that

curvature has on them. The motivation for this study is two-fold. First, we look

at the effect of curvature on disturbances that have a wave-vector orientation

in between that of vortices (i.e. purely along z) and that of two-dimensional TS

waves (i.e. purely along z). Second, the waves studied will be candidates for

the nonlinear wave-vortex study, discussed in the next section.

In this study, the wall corrugations are omitted, leaving a smooth plate.

The boundary conditions are homogeneous, leading to the classical eigenvalue

problem for the TS waves. We solve for an augmented eigenvector composed

of {u, v, tgu/az, c3v/Ox} and an augmented eigenvalue (a, da/dx) using the "lo-

cal procedure" described in Bertolotti, Herbert & Spalart [11]. This procedure

yields an improved solution over the standard Orr-Sommerfeld solution: in par-

ticular, it captures the increased effect of non-parallelism on three-dimensional

waves (Bertolotti [12]). However, the procedure becomes invalid in the limit of

low-frequency and long-wavelengths, where the governing equation cannot be

reduced to ordinary differential form. In particular, the validity of the local pro-

cedure breaks down when the streamwise wavelength of the eigenmode becomes

of order O(R), hence the procedure cannot reach the limit of pure vortices.

We use the local procedure because it allows the neutral curves to be traced

emciently in the R-F plane. Using the PSE solution, on the other hand, requires

many runs at different frequencies in order to "raster-scan" the neutral curve,

like, if you will, the electron beam on a TV screen.

The neutral stability curves, based on f0°° udy, for TS waves having a fixed

spanwise wavenumber, fl = 0.30 and fl = 1.0 are shown in figure 9. In the

absence of curvature the low-frequency TS waves are stable, but with some

curvature present a second region of instability appears near F = 0. Focusing

on the _ = 0.3 case, we see that as the curvature increases, two neutral curves

form: the upper is the continuation of the curve for the flat plate; the second,

at low frequencies, displays the fact that centrifugal instability is amplifying the

G6rtler vortices (F = 0) as well as modes with low frequency_. At a curvature

value of 8 x 10 -4 the two curves merge. At this point there is a smooth connection

between TS waves and the G6rtler vortices.

The numbers along the outer neutral curve represent the wave-angle of the

TS wave when/C = 8 x 10 -4. The table below gives the phase-speed of the TS

wave at the location where the symbol of the wave angle appears in figure 9.

Note the increase in phase-speed as the frequency is lowered, and the wave-angle
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is increased.

Neutral curve, fl = 0.3, n = 8 x 10 -4

Wave Angle (deg.) Phase Speed

34.4 °

43.2 °

44.8 °

53.8 °

59.1 °

65.4 °

69.4 °

72.8 °

83.5 °

85.4 °

0.4016

0.3984

0.3930

0.4019

0.4014

0.4174

0.4226

0.4401

0.5114

0.5735

qeutral curve,/_ = 1.0, x 8 × 10 -4

Wave Angle (deg.) Phase Speed

85.1

86.2

86.5

86.7

0.6180

0.6510

0.6424

0.6829

TS waves with a fl = 1.0 have a 1/3 shorter spanwise wavelength than those

with/3 = 0.3, and, hence, are more densely packed. In the Blasius boundary

layer, these waves are stable. Furthermore, the well-icnown types of nonlinear

wave interactions, i.e. K-type and H-type, involve waves with _ roughly equal

to a, hence in the range fl < 0.5. Thus, we must look at the growth rates to

make some comments on importance of these densely packed waves.

Figure 10 compares the growth rates of a vortex with fl = 0.3 and those of

a TS wave with/3 = 0.3 and F = 20. The vortex grows over a fully corrugated

wall, while the waves grow over a smooth wall. The growth rate of the vortex

is greater than that of the TS wave, being roughly twice as large for the case

of curvature = t¢ = 8 × 10 -4. For comparison, the maximum growth rate of a

2-D TS wave with F = 60 is 3' = 0.0141. Thus, the low-frequency 3-D TS wave

undergo slower growth, but do so over a more extended streamwise distance.

We conclude this section with figure 1 I, which shows the variation of the

receptivity coefficient in Crouch's receptivity model [1] with curvature for a 2-D

TS wave at F = 60 and a 3-D TS wave with F = 60 and fl = 0.15. The
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6 Some case-studies of wave-vortex interac-

tion.

The interaction between vortices and traveling waves in boundary-layers can

play a major role in determining the transition location on swept wings. Partly

for this reason, this interaction has been the focus of numerous studies.

Direct
"_ Interaction

......................

Indirect
,i _,Interaction

_._F

The two possible ways a vortex and a wave can interact are shown in the

figure above. The left diagram shows the triad interaction between a vortex

and two oblique TS waves of equal frequency and streamwise wavenumber,

but opposite spanwise wavenumber. We shall refer to this interaction as the

"direct interaction", since in a perturbation approach employing an expansion

in amplitude, the waves interact at first order. The right diagram shows a triad

interaction between a vortex, a two-dimensional traveling wave and a three-

dimensional traveling wave. The traveling waves have equal frequency and a

nearly equal streamwise wavenumber. The oblique vector is of a lighter shade of

gray to indicate that its presence is not necessary at the onset of the interaction

- this wave will be generated by the interaction between the vortex and the 2D

wave, and will rise in amplitude to close the triad interaction. We shall refer to

this interaction as the "indirect interaction", since in a perturbation approach

employing an expansion in amplitude, the waves interact, initially, at second

order.

The direct interaction has been investigated more thoroughly than the indi-

rect interaction. Studies of the direct interaction include those of Hall and Smith
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[13] who employed a triple-deck asymptotic expansion in an analysis entitled

"on strongly nonlinear Vortex/wave interactions in boundary-layer transition";

Davis and Smith [14], who extended the investigation to three-dimensional

boundary layers; Thumm, Wolz and Fasel [15], who looked at the interaction in

a compressible boundary-layer using a direct numerical simulation, starting with

only the oblique waves; Chang and Malik [16], who looked at the same case using

the PSE equations; and Spalart [4], who employed a direct numerical simulation

to look at the generation of cross-flow vortices by suction non-uniformities, and

the subsequent breakdown induced by interaction with a TS wave.

With the exception of Spalart [4], the vortex in these investigations was

generated by the nonlinear interaction of two oblique TS waves. Through this

process, the vortex's motion is "in tune" with the forcing provided by the trav-

eling waves, and the triad interaction is optimal from a phase point of view. In

our investigation the vortex and the traveling waves exist independently at the

initial marching location, and may not be as much "in tune". This difference

may explain the lack of resonance found in the results presented below.

The indirect interaction was studied by Bertolotti [12]. The PSE equations

where employed in a parametric study of the effect of initial amplitude levels

and vortex spanwise wave-number on the location of "transition", (defined as

the onset of rapid spectrum filling). It was shown that vortex and TS wave

behaved linearly up to the streamwise location where the the oblique wave

matched amplitudes with the vortex. Downstream of this location a strong

resonance ensued, wherein the growth rates of the vortex and of the oblique

wave where equal to one another, and were one order of magnitude larger than

those given by linear calculations. These growth rates matched those given by

Floquet theory for K-type transition. Figure 12, taken from Bertolotti [12],

displays these results. The initial conditions consists of the (2,0) TS mode, and

the (0,1) vortex. (In this work the disturbances were phased-locked, thus the

index (2,0) stands for (2,2,0) in the current terminology). The dots represent

the amplitude of the K-type secondary-instability wave with equal parameters

fl, F, and ATS as in the vortex case. The agreement in slope between the

dots and growth-rates of the vortex and the (2,1) mode indicates that these

two modes undergo resonance as in the Floquet model. This figure was not

published because the investigators felt that the way in which the vortex was

initialized, namely by taking the limit of F ---* 0 holding fl constant in the local

procedure was too arbitrary a choice.

In our slfudy of wave-vortex interaction, we will include the receptivity mech-

anism. In this way, the initial conditions are specified by a small set of data,

namely the description of the wall geometry and of the acoustic field present
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in the free-stream. We employ Crouch's model [1] for the generation of the TS

waves form the interaction of the acoustic field and the wall geometry. (See

Bertolotti and Crouch [17] for details on the PSE implementation.)

Two TS frequencies were investigated, one at F = 60, representing the higher

frequency modes, the other at F = 20, representing the lower frequencies. As

shown in figure 9, low-frequency TS waves are amplified when concave curvature

is present, and, thus, might play an important role in the transition process
over concave surfaces. The curvature is held fixed at t¢ = 2 × 10 -4. This small

value of curvature is chosen because it leads to GSrtler vortices with growth

rates similar to those of the TS waves. If the curvature is increased to higher

values, say 8 × l0 -4, then the growth of the vortex is too rapid to allow for

significant interaction with the traveling waves, and at large amplitudes the

vortex generates the transitional state suggested and investigated by Hall and

Horseman [18], wherein the inflectional mean-flow profile induced by the vortex

gives rise to inviscid (i.e. Rayleigh) instabilities.

At each frequency, two selections of surface roughness are used, a lower one

with peak-to-peak variations in the range of 1 x 10-35o, and a higher one with

variations in the range of 1 × 10-2t_o.

The parameters describing each case are listed in the table below:

Direct Interaction

F=20 F =60

a = 0.0260,/_ = 0.15 c_ = 0.0840, fl = 0.15

Low HighLow High

1.0×10 -3 0.5×10 -2

1.0×10 -3 1.0x10 -3

0.5 × 10 -3 0.5 x 10 -2

1.0 x 10 -3 1.0 × 10 -3

Indirect Interaction

F=20 F=60

= 0.03525, fl = 0.15 _ = 0.09086, fl = 0.15

Low Low

2.0 × 10 -3

1.0 × 10 -3

High

1.0 × 10 -2

1.0 × 10 -3

High
1.0 × 10 -2

1.0 × 10 -z

Since the mean-flow is independent of z, symmetric disturbances in z are

assumed. To obtain peak-to-peak values, one must multiply 142(0,,_,0)and W(0,0,,_)

by 2, and }/Y(o,,_,,_) by 4 to take into account the complex conjugate modes.

25



Legend:
1:3

Vortex
3-D TS wave
2-D TS wave
Mean-Flow Dis.

10 °
Indirect interaction

10-1

10 -2

10 -3

10-4

10-5

lO-S
400

...... i ....... : ........ ; ....... -........ !.... '

800 1200 1600

R

10 °
Indirect interaction

0-1

0-2

0-3

0-4-

0-5

0-6
400

....i........i.......TH
' : l : : /

....... ; ........ ," ........ ,'- ............. t-t, ---

800 1200 1600

R

100

10-1

10 -2

10-3

10-4

10-5

10-6
400

Direct interaction

_C_o_..............L...._ -........
: • ; :/ :

....... •........"...... ........it....... i........
i : _ ,_ :
' . : i: .....:........
, : . I :

: : : / •

....... ; ........ _..... ,; _.........................

....... " ........ :..._, ...... " ....... "........ 4 ........

J i i i i
800 1200 1600

I 0 °

10-1

10 -2

10 -3

10-*

10 -5

10 -e
400

Direct interaction

_(._!_]._. ........_................i........i.....!......J........i.........
i,, /

_.._ ........;........_........
.......;........;........i......._.......!........

I i i i i
800 1200 1600

R R

Figure 13: u,,,,= amplitudes versus Reynolds number with a traveling-wave fre-

quency of F = 20.

26



The amplitude evolution of the vortex, the traveling waves, and the mean-

flow distortion are displayed in figure 13 for the frequency F = 20 and in figure

14 for the frequency F = 60. (These frequencies values refer to the traveling

waves). Both the low and high wall roughness cases lead to a vortex-wave
resonance in the case of the indirect interaction. The location of this resonance

is only slightly affected by the level of the wall undulations.

On the other hand, the cases involving the direct interaction do not lead to

a wave-vortex interaction. The traveling wave (i.e. mode (2,2,1)) is dampened

past R = 1200, most likely due to the presence of the large mean-flow distortion

induced by the vortex. The higher growth rate of the vortex in the "High" case

is due to the receptivity of the vortex to the (2,2,1) wall mode, as discused

in section 5. The absence of a wave-vortex interaction is surprising, since the

papers cited at the beginning of this section predict a strong resonance. A

possible reason was thought to be due to an unfavorable phase relation between

the vortex and the 3-D TS wave. However, changing the phase by 90 and 180

degrees did not change qualitatively the results. Thus, the reason for the lack

of resonance remains at the moment unresolved.

The surface heights considered here are of the same order of magnitude as

adhesive tape. The indirect interaction calculations, then, can help understand

in a quantitative way Klebanov's experiment [19], in which strips of adhesive

tape where placed under the vibrating ribbon to help steady the transitional

flow structure.

7' Conclusions

The response of vortices to surface inhomogeneities, both in the form of surface

waviness and of wall-normal velocity, has been successfully investigated using

the nonlinear PSE equations. Transients, and issues of algebraic growth, have

been avoided through the use of a similarity solution as initial condition for the

vortex.

In the absence of curvature, the vortex decays as V/-(/x when flowing over

streamwise aligned riblets of constant height, and grows as v q when flowing

over a corresponding streamwise aligned variation of blowing/suction at the

wall. However, in the presence of wall inhomogeneities having both streamwise

and spanwise periodicity, the growth of the vortex can be much larger. In the

presence of curvature, the vortex develops into a G6rtler vortex.

The "direct" and "indirect" interaction mechanisms possible in wave-vortex

interaction are presented. The "direct" interaction does not lead to strong

resonance in the flow conditions investigated. The "indirect" interaction leads
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to K-type transition.
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9 Appendix A: The governing equations

We eliminate pressure by taking the curl of the Navier-Stokes equation. Since

the flow field is harmonic in z, we can eliminate w using continuity, and then

take the combinations of 0/0x(k component)- O/Oz(i component), and O/Oz(j

component) of the vorticity equation to obtain two equations governing u and

V.

The resulting formulation offers two advantages over the original equations

for the full set of primitive variables: reduced computational work, and PSE

equations that are free from numerical instabilities at short marching steps.

We separate the flow filed VT into the basic-flow, VB(x, y) and the remain-

der v(x, y, z, t), which we call the disturbance. Our basic-flow is the Blasius

boundary layer, and terms involving the second derivative with respect to x are

of negligible magnitude. Excluding these terms, the governing equations for the
disturbance components u and v are:

0 _ Oy 1 V_)V2v+OZB. Ou Ov(_ + v_ + y. Ro -_x (2_ + _)+

OZB Ov O_ZB OU. (O% 0% Ü_v 02u
ay ax + a--_ v + _ ax_ ay_ az_ 2a--_y)

[ 02u O_u 02v . OUBOv

q-
OUs av . OU8

Oy Ox + 'l'2---_-x
av.)au _ a_ 1+ + --

a a Ca (a _ a a¢-( _ + _ + az)_- a_ + _ + _Y;z)(a_

_(a,,a a,_a a¢a, (a_,a a_ a a¢ a,az_ + az_-_+ _J_ + _ + a-;a-_+ _J_

+( Ou 0 Ov 0 Ow 0 ._ au 0 av 0 Ow ____az a--;+ az a-_+ _ _z ) - (_ a-; + a--_a-_+ --az )¢ (4a)

0 0

(-_i + v._ + Y_
c9 1 2 02u 02u 02v.

Üy nov )(-_ + _ + a--_y)
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-z, °2_' oy. (_ o2u o_v )
Oz 2 Oy Ox 2 + _ + OxOy

F 0% . 0%]

o o ¢o.o_ ro_o o,7o o¢ o,
(_+'TN+ _)N+,OzO_ + o_o_+NN jv

0 0 0.077 Ou 0 Ov 0 Ow 0

-(u_ + v_ + WF;z)_ - (---- + ---- + --_),7 (4b)y Oz Ox Oz Oy Oz

We have placed the nonlinear terms involving the product of disturbance quan-

tities as right-hand-side terms because these terms will be lagged in the iterative

process used to solve the system of equations.

The basic-flow terms on the third line of equation (4a) are negligible within

boundary-laye theory. When the disturbance has velocities components of equal

magnitude, such as a traveling wave, then these terms are negligible. However,

when the disturbance has u and v velocity components that scale like those of

the Blasius flow, such as vortices, then the terms on the third line of (4a) become

of equal order to terms in the first two. Thus, in cases where the disturbance

field includes both waves and vortices, as in the present study, these terms

should be kept. In passing we note that, for steady vortices, equations (4a) and

(4b) equal Hall's equations for GSrtler vortices [22].

The parabolized stability equations, commonly abbreviated to PSE, were

conceived by Herbert and developed by Herbert _z Bertolotti [20] to incorporate

nonlinearity and the slow growth of the boundary layer into the boundary-layer

stability computations. The results were found to agree with those of full DNS

simulations up to "spike stage", where the complexity of the flow rapidly spreads

beyond the resolution of the PSE code [11,12,21].

We express the disturbance velocity field in a series in time (index l), in x

(index n) andin z (index k),

OO OO OO

VC.T, y, z, t) -- _ _ _ Vp(X,y,z,t) (5)

I-----oo n-----co k----oo

where, p is the wave-vector (1, n, k). The velocity field of each mode is parti-

tioned into

Vp(X, y, z, t) = _p(X,y) Xp(X, z,t). (6)

The function

"_p(X, y)
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describes(in a sensemadespecificbelow) the velocity profile of eachmode and
the function X incorporates the growth and wavelike part of the mode's velocity

field

[L" ]Xp(X,z,t)=exp ap(s)ds + ikflz- ilwt . (7)
0

where the complex wavenumber ap is composed of a real growth rate, Or,, and

an imaginary wavenumber C_p,

ap = 7p + i_p

The partial differential equation governing the velocity profiles ¢rp is ob-

tained by substituting the expansion (5) into equations (da) and (4b). For the

streamwise derivatives we make use of the slow change with x of the profiles

and growth rates with the rule

dap A ]
0%

(m- 1)a -2O_v-'-'-POx"_ = ap_Cp + rna_-' Ox + --2 _ Vpj Xp, (s)

where ap(X) = 7p(X) + inot. For m > 1 the streamwise derivatives of the

mean-flow Vs are zero, in accordance with the boundary-layer approximation.

Similarly, in (8) we drop second- and higher-order derivatives with respect to

x of 9p and ap. Performing harmonic balance yields an infinite set of coupled

partial differential equations of parabolic type in x of the form

dap_ ^L_rp + M + -_-x Nvp = _]Q[vr, Vp-r], (9)
r

where the operators L, M, N and Q contain derivatives with respect to y only.

The summation on the r.h.s, of (9) is is truncated to some number (L, N, K) in

the numerical computations. Due to the symmetry in z we only need to solve

for modes with non-negative wave numbers in t, x, and z. Upstream traveling

modes are not allowed.

An "auxiliary" condition is needed in all PSE formulations to remove the

ambiguity in (8) caused by the dependence of both Vp and ap on x. This
condition as also been called a "normalization" condition in PSE literature. In

our particular case we employ the condition,

fo ° Ofip

where t denotes the complex conjugate. Equations (9) and (10) form a complete

set for the unknows vp and ap.
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We transfer the zero-slipwall boundary condition to y = 0 via a Taylor

series expansion about y = 0, and stop the expansion at terms linear in ]HI

since this quantity is assumed small, although including higher orders in [H I

can be done in a straight forward fashion. Performing harmonic balance yields

the boundary conditions satisfied by ¢zp for each p,

-1 [w
Ap(x) [ p + _VYp-rO_'r(x'O)rOy Ar(x)]. (11)

where

E[Ap = exp ap(s)ds].
O

The xPSE transition analysis tool-kit has been employed for the computa-

tions. The partial differential equations (9) are transformed into algebraic

form by use of a multi-domain spectral collocation technique in y, and a fi-

nite difference discretization in x. Five domains are used in Y, with limits

at [0,1.6], [1.6,4], [4,14], [14,56], [56,96] (recall the reference length is 5" at

R = 1000), and u and v are approximated by 17 and 19 Chebychev polynomials,

respectively, in each domain. Asymptotic boundary conditions are imposed at

y = 96. For each mode p, we construct the vector of unknows

Xp = {u,, v,_, a}p

composed of the Chebychev coefficients for u and v, and the complex wavenum-

ber a for the mode, at the new marching location. The nonlinear algebraic

system is solved iteratively by lagging the nonlinear terms one iterate, and us-

ing a Newton method to solve the linear problem

_xF" AXp = -F(xp) + NLp (12)

for each mode p. Here, the term NLp represents the nonlinear terms, and the

function F the terms in (4a) and (4b) that are linear in u and v.
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10 Appendix B. The self-similar vortex

We approximate the vortex flow from the leading edge to the downstream lo-

cation at which we begin the PSE simulations, say xo, with a self-similar form.

Such a form satisfies continuity and the boundary conditions exactly, but pro-

duces a small residual error in the momentum equations. All terms of the

Navier-Stokes equations reduce to terms dependent on the self-similar variable

r/ except some coefficients, comming from z derivatives, that depend on x but

with a variation sufficiently slow to allow the term to be approximated as con-

stant. The curvature is set to zero.

The case of constant (in x) riblet height and the case of height proportional

to v _, as well as the case of blowing/suction of constant (in x) strength and

of decaying strength proportional to vf-1/x, yield quasi self-similar solutions.
Herein we will focus on the constant amplitude cases. The surface geometry in

the case of constant riblet height is described by the function,

H(x,z)= B:(o,1)exp[iflz] + c.c.,

where l'V(0:) is a real quantity that controls the height of the riblets. In the

case of blowing/suction the wall velocity is given by the function,

V(x,z)=$(o,,) exp[iflz] + c.c..

where $(o,1) is a real quantity that controls the strength of the suction.

For the ribbed geometry we seek steady solutions of the form,

u(x,y,z) = u,d:(,1)_"z_[_ + c._. (13)

v(x,y,z) = vsel:(y)e i_zl- + c.c. (14)
X

,_zl_ (15)w(x,_,z) = ms_,:(,7)_"-i c.c.

where r/ = yvf-x/xo is the Blasius similarity variable. For the suction case we

seek steady solutions of the form,

_(x,y,z) = _,_,:(,_)_'_Zxv'-_ + _._. (1_)
v(x,y,z) = v_t:(_)e iz_ + c.c. (17)

_(x,y,z) = _0_:(,1)_'_/_ + _._. (18)
¥ J:
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Reference length is Xo!.

Equation (la) and equation (lb) become ordinary differential equations with

independent variable ri. These equations are, respectively,

W II

aoUo,ti + aluo,t! + azu,_tf +
I II Ill iTJ

bov,_11 + blv_t I + b2v,etl + b3v,_tl + b4v,_tl = 0 (19)

cou,,,f+ ClULs+ + dov,o,f= o (2o)

where the primes denote differentiation with respect to 77. The formulation (?)

for the constant riblet height yields,

ao - [5ff + Trif m + ri2f,_ -I- C(f - rift- rizff)]/4

a_ - ri(3f" + rif')/2

a2 - [ri2 f. _ rif, -I- f ]/4

bo = -rlfi"/2- 2f" + C(C- f' + rlf"/2 )

b_ = -rif'- f"/2 -C f /2

b2 = 2f' - rif"/2- 2C

b3-- f/2

b4=l

co = rif"/2 + f'/2 -C

cl = f /2

while the formulation (?) for the constant suction yields,

ao : [f" + 3rif m + ri2 fiv + C(f - rlf t - ri2f-)]/4

al "-" ri(fn + rifm/2 )

a2 - [Ti2f" -- rift + f]/4

bo--[r/f i" -I- f" + Crlf" + 2C 2 ]/2

= -rif'- f"/2-ef/2
b2 = f'- rif'/2- 217.

b3 - f/2

b4=l

Co = rif"/2- f'/2

cl : f/2

where f(ri) is the Blasius stream-function variable, and the symbol

C = _2!
XO

represents the coefficient that is dependent on x. The no-slip boundary condi-

tions on the surface of the undulated wall are transferred to y = 0 via a Taylor
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series expansion. These conditions are,

It

u,_,l(O) = -W(o,1)f (0)

v,_tI(0) = 0

,/,<,(o) = 0

(21)

(22)

(23)

while the boundary conditions for the suction case can be directly obtained,

u,,tl(O) = 0 (24)
v,,,_(0) = W(o,,_ (25)
v',,,.t(o) = 0 (26)

!
The condition on v,,ll follows from continuity. The coefficient C prevents the

system of equations from being truly self-similar. As an approximation, we

neglect the X/Xo dependence in C to arrive at a system of ordinary differential

equations. This approximation is acceptable in view of the small values of fl of

interest - typically less than 0.1 (nondimentionalized with (5 at the PSE starting

location Xo). Thus, over the region 0 < x < Xo, the magnitude of C is less than

/32 < 0.01, which is small when compared to the order O(1) coefficients in (2a)

and (2b).
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